

Easy Timer provides a simple but extremely useful class for quickly getting timer values in a variety of interpolation methods.

The basic steps include:

1.] Create a reference for your Timer
2.] Instantiate the Timer when you are ready to begin counting
3.] Get one of many Timer properties to drive all your timing needs

JavaScript (UnityScript) C#

#pragma strict

public class TestTimer extends MonoBehaviour
{
 // Step 1
 var timer : Timer;

 function Start ()
 {
 // Step 2
 timer = new Timer(4);
 }

 function Update ()
 {
 // Step 3
 Debug.Log (timer.time);
 }
}

using UnityEngine;
using System.Collections;

public class TestTimer : MonoBehaviour
{
 // Step 1
 Timer timer;

 void Start ()
 {
 // Step 2
 timer = new Timer(4);
 }

 void Update ()
 {
 // Step 3
 Debug.Log (timer.time);
 }
}

!
NOTE

To use Easy Timer with JavaScript (UnityScript), make sure the Timer script remains in the
Standard Assets folder.

Constructors:

Timer () : Timer
Returns a new instance of Timer, with default duration of 1 second.

Timer (float duration) : Timer
Returns a new instance of Timer, with timer duration specified by duration.

Timer (float duration, float delay) : Timer
Returns a new instance of Timer, which will return 0 for delay seconds, and then will count down for duration seconds.

!
NOTE

Do not instantiate a Timer from a field initializer.
The internal call to UnityEngine.Time.time will cause an exception.

Properties

time : float { get; }

The normalized (0 to 1) return of the current timer position, evaluated
over a linear interpolation.

timeSmooth : float { get; }

The normalized (0 to 1) return of the current timer position, Bezier
interpolation with slow in and slow out.

timeFastIn: float { get; }

The normalized (0 to 1) return of the current timer position, Bezier
interpolation with fast in and slow out.

timeFastOut: float { get; }

The normalized (0 to 1) return of the current timer position, Bezier
interpolation with slow in and fast out.

timeInversed: float { get; }

The inversed normalized (0 to 1) return of the current timer position
(1 – time), evaluated over a linear interpolation.

timeSmoothInversed: float { get; }

The inversed normalized (0 to 1) return of the current timer position
(1 – timeSmooth), Bezier interpolation with slow in and slow out.

timeFastInInversed: float { get; }

The inversed normalized (0 to 1) return of the current timer position
(1 – timeFastIn), Bezier interpolation with slow in and fast out.

timeFastOutInversed: float { get; }

The inversed normalized (0 to 1) return of the current timer position
(1 – timeFastOut), Bezier interpolation with fast in and slow out.

timeUnClamped: float { get; }

The normalized (0 to 1) return of the current timer position allowed to extend beyond 1. (see example
below)

timeTotal: float { get; }

The non-normalized and unclamped return of actual seconds for the current timer position. (see example
below)

Example:

Constructor After Seconds timer.time timer. timeUnClamped timer.timeTotal

timer = Timer(2); 0 0.0 0.0 0.0

timer = Timer(2); 1 0.5 0.5 1.0

timer = Timer(2); 2 1.0 1.0 2.0

timer = Timer(2); 3 1.0 1.5 3.0

timer = Timer(2); 4 1.0 2.0 4.0

